Nabe International | Takeru Boost >> Takeruを回せ! >>

日本メディカルAI学会の公認資格、メディカルAI専門コースを受講いたしました

先日大盛況で行われました日本メディカルAI学会の第1回学術集会にナベインターナショナルは企業展示で参加いたしました。 今回、以下のような2パート構成にて行われた、学会公認資格講座も受講いたしました。 パート1: オンライン講義およびメディカルAI学会公認資格2018テスト(機械学習・深層学習) パート2: 講義および小テスト(資格試験) このうち、パート1は、機械学習に必要な数学、ライブラリの基礎から、実際的な医用画像のセグメンテーションや物体検出 (CT/MRI画像のセグメンテーションや血液の顕微鏡画像からの組織検出など) をクラウドサービス上で動作させ学習するというものでした。 今回は弊社Takeru Lite上でこれらを実際に動作させ、受講いたしました。

環境

OS: CentOS7.6 CPU: Xeon Platinum 8180(28core, 2.5GHz)×2 Memory: 256GB Disk: NVMe 2TB×1 GPU: Titan RTX ×2 notebookにはJupyter Hubを使用しました。 Jupyter Hubはsamba version4を利用したActive Directory認証に対応させていますので、クライアントのwindowsやmacとユーザー認証・管理を統合可能です。 Pythonはminiconda3からインストールしていく3.6を選択。 deeplearning分野はユーザー毎の環境の独立性も重要ですので、 pythonはホームディレクトリ以下にインストールされたユーザー固有のものが使用されます。

!which python

chainerは各種ライブラリや高速化が組み入れられた状態になっています。

chainer.print_runtime_info()

各種ライブラリをロードし、データセットを準備。モデルを作成していきます。

学習実行

trainer.run()は300epochすべて実施してみましたが、1400秒程度で完了しています。 テスト機の都合でCPUのコア数が多いものを使用していますが、それは性能にはほぼ寄与していませんが、 同じマシン上でNGSのデータも扱う方であればCPUのコア数も邪魔にはならないと思います。 もうしばらくすると顔写真入りの資格証(機械学習・深層学習基礎コース及びメディカルAI専門コース修了証)が送られて来るとのことで、とても楽しみです。 今回、その他の章もすべて実装し動作試験をいたしました。 もしこれからマシンを準備しこれらを出発点にdeep learningを活用した医用画像の解析や分析、その他の応用をお考えの方がいらっしゃいましたら、 ぜひお問い合わせいただければ幸いです。